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ABSTRACT: An optimization design method is developed for the electric heating system in rapid thermal cycling molding (RTCM)

mold. First, a multiobjective optimization model is established, in which the distance between the mold cavity surface and the center

of heating elements and the number and power density of heating elements are the design variables, the required heating time th and

the highest cavity surface temperature Tmax at time th are the objective functions. Then, an optimization strategy consisting of design

of experiment, finite element analysis, artificial neural network (ANN) and response surface methodology (RSM) models, and Pareto-

based genetic algorithm is proposed to solve the multiobjective optimization model. Finally, the optimization strategy is applied for

the design of the heating system for an automotive spoiler blow mold. The results show that the temperature distribution uniformity

on the blow mold cavity surface is obviously improved and high heating efficiency is also ensured with the optimized design parame-

ters. Moreover, the ANN model exhibits its superiority over the RSM model in terms of modeling and predictive abilities. A RTCM

blow mold with the optimized electric heating system is constructed and successfully utilized to mold high gloss automotive spoiler.
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INTRODUCTION

In the plastics injection and blow molding, the mold tempera-

ture is an important processing parameter because it not only

has a great influence on cycle time but also significantly affects

the surface quality of molded parts. Lower mold temperature is

usually preferred in molding process to shorten the cycle time,

whereas this will lead the plastics melt to solidify prematurely

and thus result in poor part surface quality, such as roughness,

sunken points and orange peel on the blow molded part surface

as well as welding line, flowing mark and jetting on the injec-

tion molded part surface. If the plastics parts have high gloss

appearance requirement, the surface defects have to be elimi-

nated via some secondary operations including sanding, polish-

ing, and spraying. These operations not only significantly

increase the production cost but also are harmful to the opera-

tors’ health. Raising the mold temperature to a high level can

be a good way to improve the part surface quality, but this will

extend the cycle time to a great extent in regular molding pro-

cess. In recent years, the rapid development of the automobile,

household appliance and consumer electronic industries greatly

promotes the applications of industrial plastics parts, and also

puts forward much higher performance requirement on the

parts, e.g., good appearance qualities. For this reason, a new

molding technology called rapid thermal cycling molding

(RTCM) is developed recently to meet the increasingly strict

requirement on plastics parts. In this new molding process, the

mold cavity temperature is alternately changed via rapid heating

and cooling in each molding cycle. Owing to the high mold

cavity temperature, the filled plastics melt or inflated parison

melt can easily replicate the glossy mold cavity surface and thus

high-gloss parts can be molded. At the same time, rapid heating

and cooling can also keep the cycle time at an acceptable level.

To alternately change the mold cavity temperature without a

great increase in cycle time, a rapid mold heating technique is

required. In recent years, some rapid mold heating methods

have been proposed. These methods can be mainly divided into

two categories: external heating and internal heating. The for-

mer category mainly include induction heating,1 gas-assisted

heating,2 high-frequency proximity heating,3 infrared heating,4

etc. As to the latter category, the steam-assisted heating,5 hot

water or oil heating,6 and electric heating7 are the most com-

monly used methods. The external heating methods do have
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high heating efficiency, but the high cost, complex mold struc-

ture or low temperature uniformity limits their applications in

actual production. In practical applications, the internal heating

methods are much more preferable in terms of their better

adaptability and stability, particularly for the mold with a rela-

tively large volume. Some heating channels are drilled within

the mold with the internal heating to transport the hot medium

or install the electric-heating elements. To acquire the best per-

formance of the heating system in terms of the temperature dis-

tribution on mold cavity surface and the heating efficiency, it is

quite necessary to optimize the layout of heating channels in

the mold. To solve this problem, some optimization design

methods have been proposed. Li et al.8 proposed the optimiza-

tion strategy combining response surface methodology (RSM)

with genetic algorithm (GA) to optimize the layout of heating

channels for a RTCM injection mold with steam-assisted heat-

ing. In addition, an optimization strategy coupling RSM with

particle swarm optimization (PSO) was also proposed by Wang

et al.9,10 The RSM model is usually constructed for the defined

variables of a process or system by fitting a polynomial equa-

tion. Artificial neural network (ANN) can be considered as an

alternative to the polynomial regression. Among various kinds

of ANN models, the error back propagation (BP) feed-forward

neural network is the most widely utilized one, and it has been

used for modeling in many processes.11–15 Moreover, stochastic

search procedure based on the GA can be an efficacious manner

for process optimization. The GA is capable of exploring large

solution space in parallel. The GA coupling with the ANN

model has been successfully applied in many process optimiza-

tion problems.16–18

The present work aims to develop an effective optimization

design method for the heating system in the RTCM mold with

electric heating. First, a multiobjective optimization model for

both mold cavity temperature uniformity and heating efficiency

is established. Then, a multiobjective optimization strategy is

proposed, which consists of design of experiment (DOE), finite

element analysis (FEA), RSM and ANN models, and Pareto-

based GA. Finally, the developed optimization method is then

used to design the heating system for an industrial blow mold.

MULTIOBJECTIVE OPTIMIZATION MODEL AND ALGORITHM

In general, many optimization problems in engineering domains

have multiple objectives. In this work, the heating system design

of the RTCM mold has the objectives of uniform temperature dis-

tribution on cavity surface as well as high heating efficiency. For

this purpose, the design of heating system must be optimized.

Design Variables for Optimization

For the RTCM mold with electric heating, the heating elements

installed in the mold are usually located closely and conformally

to the mold cavity surface to improve the heating efficiency.

Moreover, the distance between the adjacent heating elements

should be kept the same for uniform mold cavity heating. Thus,

the distance between the center of heating elements and cavity

surface (H), and the number (N) and power density (q) of heat-

ing elements are the three main parameters affecting the heat

transfer process of the mold. Therefore, parameters H, N, and q

are selected as the design variables in the optimization design of

the heating system.

Objective Functions

In RTCM, the mold cavity surface is required to be heated to a

designated temperature, usually above the thermal distortion

temperature of the used plastics. The heating efficiency and the

temperature distribution uniformity on the mold cavity surface

are two main concerns in RTCM. This is because that they

directly affect the production efficiency and part surface quality.

In this work, the required heating time, th, for the whole mold

cavity surface to be just heated to the designated temperature, is

used as an objective function to evaluate the heating efficiency;

whereas the highest cavity surface temperature, Tmax, at time th

is used as another objective function to evaluate the tempera-

ture uniformity on the mold cavity surface.

Multiobjective Optimization Model

The objective of the optimization design of heating system is to

find the optimum values of the design variables (H, N, q) for

simultaneously minimizing the required heating time th and

highest cavity surface temperature Tmax within design space.

This multiobjective optimization model can be formulated as

the following expressions:

Find : H ;N ; q

Make : th H ;N ; qð Þ;Tmax H ;N ; qð Þ ! min

Within the ranges :

H lð Þ � H � H uð Þ;N lð Þ � N � N uð Þ; q lð Þ � q � q uð Þ

(1)

where H(l), H(u), N(l), N(u), q(l), and q(u) represent the lower and

upper limits of design variable H, N, and q, respectively. The

limits of these parameters can be determined based on the size

and mechanical strength of the mold investigated and the actual

power density of heating elements available.

Pareto Solution and Multiobjective GA

It is impossible to find a unique optimal solution that makes all

the objective functions to be the best simultaneously due to the

fact that the objectives under consideration usually conflict with

each other. Most of the multiobjective optimization problems give

rise to a set of optimal solutions known as Pareto solutions. The

Pareto solutions are some compromise solutions in the feasible

regions.19–21 That is, these solutions capture the trade-offs among

the objectives and each Pareto solution satisfies the objectives at a

reasonable level. Each point in Pareto solution set can be selected

as the best one according to the designer’s consideration for the

requirements of a practical problem. In light of this, the ultimate

goal of a multiobjective optimization algorithm is to identify the

Pareto solution set. In this work, the multiobjective GA based on

Pareto ranking approach is adopted to search the Pareto solutions

for the multiobjective optimization problem. The detailed devel-

oping procedure of this algorithm can be found in Ref. 22.

OPTIMIZATION STRATEGY

Before achieving optimum design of the heating system, the

quantitative relationships between objective functions and

design variables must be created first. For this reason, the DOE
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method is adopted to evaluate the influence of design variables

on objective functions. The FEA program is used to simulate

the heat transfer process and then to acquire the corresponding

values of objective functions for different combinations of

design variables arranged through the DOE. Using the obtained

DOE patterns, the RSM and ANN models are developed to

establish the quantitative relationships between objective func-

tions and design variables.

RSM Model

RSM model is a useful analytical function to describe the quanti-

tative correlation between the responses and independent varia-

bles. There are many types of RSM models that can be employed

to establish the functions, but the full second-order polynominal

model is the commonly used one. The second-order RSM model

can be represented as the following expression:

y5b01
Xk

i51

bixi1
Xk

i51

biixi
21
Xk21

i51

Xk

j>i

bijxixj (2)

where y is the response; xi and xj are the independent variables;

b0 is the model constant; bi, bij, and bii represent the coeffi-

cients of linear, interaction and quadratic terms, respectively; k

is total number of independent variables. The RSM model can

be fitted using the patterns from the aforementioned DOE by

least-square method.

ANN Model

ANN model is a data modeling tool that is able to capture and

represent the complex relationship of the input and output data.

It is well known that the BP neural network with three layers can

approximate any nonlinear functions with arbitrary accuracy.

Therefore, a three layer BP feed-forward neural network is used

to build the predictive model using the aforementioned patterns

from the DOE as the training patterns. The neural networks tool-

box in MATLAB is used to generate the neural network. Before

presenting the patterns to the BP network, the input and output

data are normalized in the range of [21, 1] to train the network

more efficiently. The hyperbolic tangent and purely linear func-

tions are chosen as the activation functions for the neurons in

the hidden and output layers of network, respectively. To improve

the generalization abilities of the network, a matlab function

(TRAINBR) developed based on Bayesian regularization tech-

nique is selected as the training algorithm.

Before using the developed RSM and ANN models to predict

the values of objective functions in design space, it is quite nec-

essary to assess the fitting and prediction accuracies of these

models. For this reason, three evaluation parameters including

correlation coefficient (R2), mean absolute error (MAE) and

root mean square error (RMSE) are employed in this work:

R2512
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(5)

where p is the number of simulations, Oj is the values of the

objective functions obtained in the jth simulation, Tj is the cor-

responding predicted values of the objective functions in the jth

simulation using the models, and Te is the average values of the

objective functions in p number of simulations. Additionally,

five validated simulations are also carried out using the design

variable values chosen randomly in design space to check the

generalization abilities of the constructed models.

Both developed models with high prediction and generalization

accuracies are solved using the multiobjective GA to optimize the

design variables. Then, the FEA is conducted to simulate the th

and Tmax using the optimized variables as the design parameters of

heating system to validate the effectiveness of its optimal design.

APPLICATION OF OPTIMIZATION STRATEGY IN MOLD
HEATING SYSTEM DESIGN

In this section, the RTCM blow mold for molding the automo-

tive spoiler is taken as an example to illustrate the application

Figure 1. Schematic of (a) automotive spoiler and (b) corresponding elec-

tric heating RTCM blow mold. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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of the optimization strategy proposed above in electric-heating

system design.

Figure 1 shows the three dimensional (3D) CAD model of the

automotive spoiler and corresponding RTCM mold with electric

heating. To cut the manufacturing cost, the dimensions of the

molded spoiler in this work are reduced relative to the actual

automotive spoiler. The length and width of the spoiler are

�420 and 110 mm, respectively, and its average wall thickness

is about 3 mm. In the practical applications, excellent surface

appearance in the front side of the spoiler is required. So, the

front half-mold needs to be thermally cycled in the RTCM

process. The electric heating rods are selected as the heating

elements to heat the mold cavity surface and water is used to

cool the mold in each molding cycle.

In this work, the full factorial experimental design is selected as

the DOE method. In the experimental design, three levels are

set for each design variable. The results of the full factorial

experimental design are detailed in Table I. The transient ther-

mal analysis module of the commercial finite software ANSYS is

used to conduct the heat transfer analysis to obtain the

Table I. Full Factorial Design Matrix with Simulated and Predicted Responses

No.

Design variable Response 1 Response 2

H (mm) N (2) q (W cm22)

th (s) Tmax (�C)

Simulated

Predicted

Simulated

Predicted

RSM ANN RSM ANN

1 16 5 25 22.70 22.97 22.67 134.93 134.37 135.07

2 16 5 30 19.60 19.58 19.57 138.67 138.25 138.64

3 13 4 20 26.20 26.45 26.88 127.35 128.59 128.76

4 10 5 20 15.20 15.16 14.88 133.14 132.93 133.30

5 10 4 20 20.40 20.23 20.73 139.46 138.23 136.95

6 13 5 20 20.30 20.66 20.36 126.50 127.06 126.52

7 16 4 25 28.40 28.55 28.53 132.38 131.91 132.32

8 13 5 30 14.10 13.83 14.17 132.34 131.84 132.33

9 10 4 30 12.90 13.01 12.90 140.27 139.35 140.28

10 10 4 25 15.70 15.85 15.71 139.55 138.90 139.53

11 13 5 25 16.50 16.47 16.39 129.60 129.55 129.62

12 13 6 20 16.90 16.91 16.94 129.84 129.22 129.82

13 13 6 25 14.00 13.66 13.97 133.69 131.95 133.70

14 16 5 20 27.70 27.90 27.78 131.16 130.27 131.07

15 13 4 25 21.10 21.33 21.26 129.22 130.86 130.96

16 16 6 30 16.90 16.98 16.92 143.07 144.64 143.32

17 16 4 30 24.20 24.23 24.14 136.03 135.56 136.05

18 13 4 30 17.90 17.75 17.87 132.00 132.91 132.54

19 10 6 20 12.10 12.14 12.07 130.63 131.33 130.62

20 16 4 20 35.00 34.41 34.89 128.03 128.04 128.07

21 10 5 25 12.00 11.71 11.72 133.12 133.83 134.45

22 16 6 25 19.50 19.43 19.54 139.74 140.53 139.68

23 10 6 30 8.20 8.66 8.19 133.49 133.37 133.49

24 10 6 25 9.70 9.63 9.70 132.09 132.46 132.26

25 16 6 20 23.50 23.43 23.41 135.73 136.20 135.80

26 13 6 30 12.00 11.95 12.08 135.85 134.46 137.10

27 10 5 30 10.00 9.81 10.01 133.12 134.51 134.53

Validated simulations

1 12 4 20 23.60 24.19 23.61 128.84 130.79 128.87

2 12 5 25 15.00 14.70 14.82 130.08 129.97 128.50

3 14 5 30 15.80 15.56 16.12 133.86 132.96 134.75

4 15 4 30 22.00 21.88 21.96 134.13 133.67 135.12

5 15 5 20 25.00 25.29 25.06 130.20 128.19 130.21
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corresponding values of the objective functions for different sets

of design variables. Because the heating system is installed only

in the front half-mold, the heat transfer analysis and optimal

design of the heating system are only conducted on the front

half-mold. Strictly speaking, the heat exchange between the

heating rods and front half-mold base is a 3D heat transfer

problem. But, taking into account the fact that the front half-

mold exhibits nearly the same cross-section, it is reasonable to

simplify the 3D FEA problem to be a 2D one during heat trans-

fer analysis. Figure 2 shows the geometry model for the 2D

analysis. Figure 3 illustrates the mesh model and boundary con-

ditions for the thermal response analysis. The heat flux, the

value of which equals to the power density of the heating rods

used, is loaded at the interface between the heating rods and

mold base. The initial mold temperature, environmental tem-

perature and air free convection coefficient are set to be 30�C,

30�C and 15 W m22�C21, respectively. The properties of the

mold steel (AISI P20) and electric heating rod filler are listed in

Table II. The diameters of all heating rods are 8 mm. The desig-

nated temperature of the mold cavity surface is 120�C.

The patterns obtained from the aforementioned full factorial

experimental design is used to develop the RSM and ANN

models. Because there is no definite rule available to determine

the appropriate number of neurons in the hidden layer for the

ANN model, it is determined by trial and error method. The

result shows that the ANN model with 10 neurons in hidden

layer can give smaller mean square error (MSE) and better con-

verging rate. The architecture of the ANN model used in this

work is shown in Figure 4. The tolerance of MSE and maxi-

mum number of training iterations are set at 1024 and 100,

respectively.

Once the models with good generalization are developed, the

models can be used as the fitness functions of GA to solve the

multiobjective optimization models [eq. (1)]. In the hybrid

RSM-GA and ANN-GA optimizations, the population size is

initialized as 90. Adaptive feasible mutation is adopted. Scatter

crossover is selected and the crossover fraction is set at 0.75.

The average change in the spread of Pareto solutions <0.0001 is

used as the stopping criteria for the algorithm.

RESULTS AND DISCUSSION

Model Fitting and Analyses

The simulated values of the th (response 1) and Tmax (response

2) obtained from the full factorial experiments are given in

Table I. The data are used to fit the full second-order RSM

model [eq. (2)]. The fitted two quadratic polynomial models

are expressed as follows:

th581:12811:800H–15:580N–2:518q–0:241HN–0:049Hq

10:187Nq10:097H211:022N 210:031q2 (6)

Tmax 5364:491–21:983H–35:388N–0:920q11:255HN

10:107Hq10:046Nq10:505H211:848N 2–0:004q2 (7)

Analysis of variance (ANOVA) is used to check the significance

of the regression models for both th and Tmax at a 95% confi-

dence level, and the results are given in Tables III and IV,

respectively. The F value is calculated from a term mean square

divided by a residual mean square. The P value (probability) is

used as a tool to examine the significance of model terms. The

term with P value <0.05 is significant, or else it is insignificant.

As shown in Table III, the P value for the model of the th is

<0.0001, which implies that the regression model is significant.

Figure 2. Geometrical model for heating system design.

Figure 3. Mesh model and boundary conditions for thermal response

simulation. [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

Table II. Properties of Mold Material and Heating Rod Filler

Material q (kg m23) k (W m21�C21) C (J kg21�C21)

Mold steel 7850 33.5 470

Heating
rod filler

2700 5.5 1100

Figure 4. ANN architecture (3–10–2) used in this work.
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In addition, the single terms of H, N, and q, interaction terms

of HN, Hq, and Nq and quadratic terms of H2, N2, and q2 are

significant model terms indicated by their P values. In Table IV,

the P value <0.0001 indicates the significant nature of the

model of the Tmax. Among the model terms, the single term of

q, interaction terms of HN and Hq and quadratic terms of H2

and N2 are significant model terms. The regression models are

also evaluated via the correlation coefficient R2 [eq. (3)], the

values of which are found to be 0.998 and 0.954 for the models

of th and Tmax, respectively. Higher R2 value for the constructed

regression model of the th implies that it is able to give better

estimate of the th in the design space.

For the ANN approach, the normalized training patterns are

used to train the neural network. The weight and threshold val-

ues for each neuron in hidden and output layers of the network

are updated iteratively in the training process. Once the MSE or

the maximum number of training iterations for the network

reaches the set value, the network-training process is stopped.

Figure 5 shows the evolution of the MSE for the ANN model

during training. After 60 iterations, the MSE is decreased to the

predetermined value of 1024, then the training process is termi-

nated and the trained network is obtained. The values of R2 for

the models of the th and Tmax are 0.999 and 0.962, respectively.

The small magnitude of MSE (1024) and high values of R2

demonstrate that the constructed ANN model possesses good

approximation characteristics.

Comparison of Predictive and Modeling Abilities of RSM and

ANN

The responses predicted by the constructed RSM and ANN mod-

els for the designed and validated simulations are listed in Table I.

It can be found that the predicted responses agree with the simu-

lated data well, which indicates that both constructed RSM and

ANN models can yield accurate responses and possess good gen-

eralization abilities. The R2, MAE, and RMSE calculated by eqs.

(3)2(5) are listed in Table V. As can be seen, for the designed

and validated simulations, the ANN model shows higher R2 values

than the RSM model. Moreover, the values of the MAE and

RMSE of the ANN model are lower than those of the RSM

model. That is, the ANN model predicts more accurate responses

than the RSM model for the th and Tmax within the design space.

Generation of the RSM model needs only a single step calcula-

tion and so the computation cost is low. However, it is note-

worthy that the search process of the RSM model highly

depends upon search space because only quadratic nonlinear

correlation is usually assumed. To make use of RSM more effec-

tively, the search space needs to be narrowed down appropri-

ately. This requires either more extra experiments or good prior

knowledge of the process or system to determine the search

space. For the ANN model, the generation may require a large

number of iterative calculations and so higher computation cost

depending on the nonlinearity of the process and the number

of parameters. Fortunately, the ANN can capture inherently

almost any form of nonlinear relationship and its search space

can be chosen 2more liberally.

Table III. ANOVA Results for Required Heating Time

Source
Sum of
squares DOF

Mean
square F-value P-value

Model 1082.49 9 120.28 1509.42 <0.0001

H 570.09 1 570.09 7154.43 <0.0001

N 264.50 1 264.50 3319.36 <0.0001

q 210.13 1 210.13 2636.98 <0.0001

HN 6.31 1 6.31 79.16 <0.0001

Hq 6.60 1 6.60 82.84 <0.0001

Nq 10.45 1 10.45 131.18 <0.0001

H2 4.56 1 4.56 57.28 <0.0001

N2 6.27 1 6.27 78.68 <0.0001

q2 3.58 1 3.58 44.90 <0.0001

Residual 1.35 17 0.08

Total 1083.85 26

R2 5 0.998

Table IV. ANOVA Results for Highest Cavity Surface Temperature

Source
Sum of
squares DOF

Mean
square F-value P-value

Model 455.36 9 50.60 39.27 <0.0001

H 1.32 1 1.32 1.02 0.3260

N 5.38 1 5.38 4.18 0.0568

q 102.72 1 102.72 79.73 <0.0001

HN 170.03 1 170.03 131.98 <0.0001

Hq 30.72 1 30.72 23.85 <0.0001

Nq 0.63 1 0.63 0.49 0.4938

H2 124.00 1 124.00 96.25 <0.0001

N2 20.49 1 20.49 15.90 0.0010

q2 0.07 1 0.07 0.06 0.8170

Residual 21.90 17 1.29

Total 477.26 26

R2 5 0.954

Figure 5. Variation of MSE with generation during ANN training.
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GA-based Multiobjective Optimization and Confirmative

Simulations

The previously developed RSM and ANN models are used as

the fitness functions for GA to optimize the design variables

within design space. On the basis of the hybrid RSM-GA and

ANN-GA optimizations, the optimal Pareto solutions of the th

and Tmax are obtained, and the results are shown in Figure 6.

As can be seen, there is a compromising relationship between

the th and Tmax. When the heating efficiency is increased, the

temperature uniformity is decreased, and vice versa. In practi-

cal applications, the designer can select one point from the

Pareto optimal solutions as the optimal design according to

the different requirements on part surface quality and produc-

tivity. Compared with the conventional blow molding process,

the production efficiency can be significantly enhanced due to

the fact that the secondary operations can be eliminated in

the RTCM process for the molded parts with high surface

quality requirement. Therefore, the Tmax, representing the tem-

perature distribution uniformity of the mold cavity surface, is

selected as the major consideration in this work. Based upon

the above analyses, the optimized results by using the hybrid

RSM-GA and ANN-GA optimization methods are obtained

and given in Table VI. It can be found that there is little dif-

ference between the optimized results obtained by the two

hybrid optimization methods. This is because that both the

RSM and ANN models developed in this work are quite

significant.

Using the aforementioned optimized design variables as the

design parameters of the heating system, the simulations are

performed to obtain the objective functions (th and Tmax) and

the results are listed in Table VI. As can be seen, the errors

between the simulated and optimized results are quite small

(<1.5%), which demonstrates the effectiveness of both hybrid

optimization methods. Moreover, the hybrid ANN-GA method

shows higher accuracy in finding optimum design parameters

and predicting optimum responses than the hybrid RSM-GA

one. Figure 7 shows the temperature contour plots on the ana-

lyzed cross-section of the front half-mold with the optimal heat-

ing system design. Corresponding temperature distribution

across the mold cavity surface is shown in Figure 8. It can be

observed that the maximum cavity surface temperature differ-

ence is within 8�C and the required heating time is about 20 s.

As a result, it can be speculated that the spoilers molded using

the RTCM with the optimal heating system design have much

glossy and uniform surface appearance, and the heating effi-

ciency can be ensured as well.

Molding Experiments and Results

The above comparative analyses demonstrate that the optimized

values of the design variables obtained by the hybrid ANN-GA

method are more reasonable in terms of shorter required heat-

ing time and more uniform temperature distribution on the

mold cavity surface. Therefore, an electric heating system is

designed for the automotive spoiler mold according to the opti-

mized values obtained by the hybrid ANN-GA method. The

constructed RTCM blow mold of automotive spoiler is shown

in Figure 9. The molding experiments for the spoiler are con-

ducted on an industrial extrusion blow molding machine, which

has a screw diameter of 55 mm and a length-diameter-ratio of

Table V. Comparison of Predictive Abilities of RSM and ANN Models for Designed and Validated Simulations

Parameter Designed simulation Validated simulation

th Tmax th Tmax

RSM ANN RSM ANN RSM ANN RSM ANN

R2 0.9987 0.9992 0.9541 0.9621 0.9939 0.9983 0.6916 0.9062

MAE 1.0749 0.5551 0.5686 0.3161 1.5449 0.7379 0.8314 0.5297

RMSE 0.2248 0.1785 0.9007 0.7956 0.3447 0.1674 1.3324 0.9241

Figure 6. Pareto optimal solutions of design variables based on (a) RSM-

GA and (b) ANN-GA optimizations.
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25:1. The material used is ABS (grade BM5602, TechnoPolymer,

Japan) with a melt index of 1.7 g/10 min (240�C, 10 kg) and a

thermal distortion temperature of 115�C. So the designated

mold cavity surface temperature is set at 120�C in the experi-

ments. The extruder is operated at 170�C in the feeding zone

and at 240�C toward the parison die. The parison is formed

through a diverging die having an outer diameter of 80 mm and

a lip gap of 3 mm. The blowing pressure is set at 1.0 MPa.

Figure 10 shows the comparison of the spoilers molded with

conventional and electric heating RTCM blow molding proc-

esses. As can be clearly seen, the spoiler molded with the former

process has low surface gloss and obvious sunken points;

whereas high gloss surface and no sunken points appear on the

spoilers molded using the latter process, and so the sanding,

polishing or spraying processes can be eliminated completely.

The molding cycle time for the electric heating RTCM process

is about 62 s, which is only 628 s longer than that for the con-

ventional blow molding process. Moreover, for the spoiler mold

investigated in this work, the electric heating process consumes

about 0.1 kWh more electric energy than that of the conven-

tional process for each molding cycle in the mold heating stage.

The cycle time and energy consumption for the RTCM process

is thought in accepted ranges considering the benefits in part

surface appearance. Therefore, the electric heating RTCM tech-

nology for producing the automotive spoiler with high gloss

appearance is feasible.

CONCLUSIONS

In the present work, the RTCM technology with electric heating

and water cooling is developed to improve the surface quality

of molded plastics parts. A multiobjective optimization strategy

consisting of DOE, FEA, ANN, and RSM models, and Pareto-

based GA is proposed to optimize the design of electric heating

Table VI. Optimized Values of Design Variables and Objective Functions

Using Hybrid Optimization Methods and Confirmation Simulations

Design variable
Objective
function

H (mm) N (2) q (Wcm22) th (s) Tmax (�C)

RSM-GA 13.44 5 20 21.62 126.99

Simulated 13.44 5 20 21.30 127.27

Error (%) 2 2 2 1.50 0.22

ANN-GA 12.98 5 20 20.33 126.52

Simulated 12.98 5 20 20.20 126.32

Error (%) 2 2 2 0.64 0.16

Figure 7. Temperature contour plots on analyzed cross-section of front

half-mold with optimal heating system designs obtained using (a) RSM-

GA and (b) ANN-GA optimizations. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 8. Comparison of temperature distributions across cavity surface

of mold with optimal heating system designs. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]

Figure 9. RTCM blow mold of automotive spoiler. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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system in RTCM mold. By performing this optimization strat-

egy to design the electric heating system for an actual blow

mold of automotive spoiler, its effectiveness is verified. With the

optimized design parameters, the maximum temperature differ-

ence across the blow mold cavity surface is within 8�C and the

required heating time is also maintained at an acceptable level.

It is also found that the ANN model exhibits superior over

RSM model. The blow molding experiments show that the

automotive spoilers molded with the electric heating RTCM

process possess high gloss appearance and no sunken points,

and thus the secondary processes can be eliminated completely.

The optimization method can also be used to design the heating

system for other RTCM molds.
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